

Mahatma Fule Arts, Commerce, and Sitaramji Chaudhari Science Mahavidyalaya, Warud

Department of Mathematics

Congruence classes

Dr. R. S. Wadbude

Associate Professor

Contents

Congruence modulo m
 Equivalence Relation
 Residue or Congruence classes
 Theorem and Examples
 References

Congruence modulo m

Let m be any fixed positive integer i.e. m > 0. Then an integer a is said to be congruent to another integer b modulo m if m | a - b.

Denoted by $a \equiv b \pmod{m}$

and read a is congruent to b modulo m

$$a \equiv b \pmod{m} \Leftrightarrow m | a - b$$

$$\Leftrightarrow m | - (b - a)$$

$$\Leftrightarrow (a-b) \text{ is multiple of `m'}$$

$$\Leftrightarrow m \text{ divides (a-b)}$$

Examples:

$$89 \equiv 25 \pmod{4} \Leftrightarrow 4 \begin{vmatrix} 89 - 25 \\ \Rightarrow 4 \end{vmatrix} 64$$

$$153 \equiv -7 \pmod{8} \Leftrightarrow 8 \begin{vmatrix} 153 + 7 \\ \Rightarrow 8 \end{vmatrix} 160$$

$$13 \equiv 3 \pmod{5} \Leftrightarrow 5 \begin{vmatrix} 13 - 3 \\ \Rightarrow 5 \end{vmatrix} 10$$

Equivalence Relation

Theorem : The congruence is an equivalence relation. That is, we have:

- 1. $a \equiv a \pmod{m}$
- 2. $a \equiv b \pmod{m} \Rightarrow b \equiv a \pmod{m}$

(Symmetric)

(Reflexive)

3. $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}$ (Transitive)

Residue or Congruence classes

Definition:

Let M be a fixed positive integer, then 'congruence modulo m' is an equivalence Relation in the set of integers. Consequently it will be partition I into equivalence classes. These equivalence classes are called residue or congruence classes modulo m. Denoted the set of all residue classes of integers modulo m by I_m .

If $a \in I$ then the residue class $[a] \in I_m$

 $[a] = \{ x: x \in I \text{ and } x \equiv a \pmod{m} \} \text{ i.e } m \mid x - a$

Similarly If $b \in I_m$ then the residue class $[b] \in I_m$

 $[b] = \{ y: y \in I \text{ and } y \equiv b \pmod{m} \} \text{ i.e } m \mid y - b$

≻Two equivalence classes are either disjoint or identical.

i.e.
$$[a] = [b]$$
 or $[a] \cap [b] = \phi \quad \forall [a], [b] \in \mathbf{I}_{\mathbf{m}}$

➢ If [a] = [b] if and only if a ≡b (mod m) if and only if m | a − b
 Thus
 [a] = [a ± m] = [a ± 2m] = [a ± 3m] = [a ± 4m] ...

Example: The residue classes for modulo 4 i.e. The elements of set I_4

$$[0] = \{..., -12, -8, -4, 0, 4, 8, 12, ...\}$$
$$[1] = \{..., -15, -11, -7, -3, 1, 5, 9, 13, ...\}$$

$$[2] = \{..., -14, -10, -6, 2, 6, 10, 14, 18, ...\}$$

 $[3] = \{ ..., 13, -9, -5, -1, 3, 7, 11, 15, 19, ... \}$

Obviously [0] = [4] = [8] and [1] = [5] = [9] = [13].....

The basic properties of residue classes modulo m:

- 1. If a and b are elements of the same residue classes [s], then $a \equiv b \pmod{m}$.
- If [s] and [t] are two distinct with residue classes a ∈[s] and b ∈ [t], then a and b are incongruent modulo m.
- 3. Two integers x and y are in the same residue class if and only if $x \equiv y \pmod{m}$,
- The m residue classes [0]m, [1]m, ..., [m − 1]m are disjoint and their union is the set of all integers.

Theorem 1: Every integer is congruent (mod m) to exactly one of the numbers in the list : 0, 1, 2, (m - 2), (m -1).

Theorem 2.

 $ca \equiv cb \pmod{m}$ implies $a \equiv b \pmod{m}$ if and only if (c, m) = 1.

Theorem :

The set I_m of all residue classes of integer modulo m contains exactly m distinct elements .

Proof:

We claim that $\mathbf{I_m} = \{ [0], [1], [2], \dots, [m-1] \}$. First we show that m residue classes are all distinct. Let $0 \le i < m, 0 \le j < m$, and j > i.

Then $[i] = [j] \Rightarrow i \equiv j \pmod{m} \Rightarrow i - j$ is divisible by $m \Rightarrow j - i$ is divisible by m.

But j - i is a positive integer less than m. So it can not be divisible by m.

Therefore $[i] \neq [j]$ and $[0], [1], [2], \dots, [m-1]$ are all distinct.

Now we shall show that if a is any integer, then the residue class [a] is equal to one of the residue classes [0], [1], [2]....[m-1]

by DAT, we have

$$a = km + r$$
, where k, $r \in I$ and $0 \le r < m$

 \Rightarrow a- r = km

 \Rightarrow a –r divisible by m

 $\Rightarrow a \equiv r \pmod{m}$

 \Rightarrow [a] = [r]

Since $0 \le r \le m - 1$, therefore the residue class [a] = [r] is one of the classes

[0], [1], [2]....[m-1]

Hence the set I_m has m distinct elements.

THANK YOU