Mahatma Fule Arts, Commerce, and Sitaramji Chaudhari Science Mahavidyalaya, Warud

Department of Mathematics

Congruence classes

Contents

$>$ Congruence modulo m
$>$ Equivalence Relation
$>$ Residue or Congruence classes
$>$ Theorem and Examples
>References

Congruence modulo m

Let m be any fixed positive integer i.e. $\mathrm{m}>0$. Then an integer a is said to be congruent to another integer b modulo m if $m \mid a-b$.

Denoted by $\quad \mathrm{a} \equiv \mathrm{b}(\bmod m)$
and read a is congruent to b modulo m

$$
\begin{aligned}
a \equiv b(\bmod m) & \Leftrightarrow m \mid a-b \\
& \Leftrightarrow m \mid-(b-a) \\
& \Leftrightarrow(a-b) \text { is multiple of ' } m ' \\
& \Leftrightarrow m \text { divides }(a-b)
\end{aligned}
$$

Examples:

$$
\begin{array}{lll}
89 \equiv 25(\bmod 4) & \Leftrightarrow 4 & 89-25 \\
153 \equiv-7(\bmod 8) & \Leftrightarrow 8 & \Leftrightarrow 4 \mid 64 \\
13 \equiv 3(\bmod 5) & \Leftrightarrow 5 & 13-3
\end{array}
$$

Equivalence Relation

Theorem : The congruence is an equivalence relation. That is, we have:

1. $\mathrm{a} \equiv \mathrm{a}(\bmod \mathrm{m})$
(Reflexive)
2. $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m}) \Rightarrow \mathrm{b} \equiv \mathrm{a}(\bmod \mathrm{m})$
(Symmetric)
3. $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ and $\mathrm{b} \equiv \mathrm{c}(\bmod \mathrm{m}) \Rightarrow \mathrm{a} \equiv \mathrm{c}(\bmod \mathrm{m})($ Transitive $)$

Residue or Congruence classes

Definition:
Let M be a fixed positive integer, then 'congruence modulo m ' is an equivalence Relation in the set of integers. Consequently it will be partition I into equivalence classes. These equivalence classes are called residue or congruence classes modulo m .

Denoted the set of all residue classes of integers modulo m by $\mathbf{I}_{\mathbf{m}}$.

If $\mathrm{a} \in \mathbf{I}$ then the residue class $[\mathrm{a}] \in \mathbf{I}_{\mathbf{m}}$

$$
[a]=\{x: x \in I \text { and } x \equiv a(\bmod m)\} \text { i.e } m \mid x-a
$$

Similarly
If $\mathrm{b} \in \mathbf{I}_{\mathbf{m}}$ then the residue class $[\mathrm{b}] \in \mathbf{I}_{\mathbf{m}}$

$$
[b]=\{y: y \in I \text { and } y \equiv b(\bmod m)\} \text { i.e } m \mid y-b
$$

$>$ Two equivalence classes are either disjoint or identical.

$$
\text { i.e. }[\mathrm{a}]=[\mathrm{b}] \text { or }[\mathrm{a}] \cap[\mathrm{b}]=\phi \quad \forall[\mathrm{a}],[\mathrm{b}] \in \mathbf{I}_{\mathrm{m}}
$$

$>$ If $[\mathrm{a}]=[\mathrm{b}]$ if and only if $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ if and only if $\mathrm{m} \mid \mathrm{a}-\mathrm{b}$ Thus

$$
[\mathrm{a}]=[\mathrm{a} \pm \mathrm{m}]=[\mathrm{a} \pm 2 \mathrm{~m}]=[\mathrm{a} \pm 3 \mathrm{~m}]=[\mathrm{a} \pm 4 \mathrm{~m}] \ldots
$$

Example: The residue classes for modulo 4 i.e. The elements of set \mathbf{I}_{4}

$$
\begin{aligned}
& {[0]=\{\ldots,-12,-8,-4,0,4,8,12, \ldots\}} \\
& {[1]=\{\ldots,-15,-11,-7,-3,1,5,9,13, \ldots\}} \\
& {[2]=\{\ldots,-14,-10,-6,2,6,10,14,18, \ldots\}} \\
& {[3]=\{\ldots, 13,-9,-5,-1,3,7,11,15,19, \ldots\}}
\end{aligned}
$$

Obviously
$[0]=[4]=[8] \ldots .$. and $[1]=[5]=[9]=[13] \ldots .$.

The basic properties of residue classes modulo m:

1. If a and b are elements of the same residue classes $[s]$, then $a \equiv b(\bmod m)$.
2. If [s] and [t] are two distinct with residue classes $a \in[s]$ and $b \in[t]$, then a and b are incongruent modulo m .
3. Two integers x and y are in the same residue class if and only if $x \equiv y(\bmod m)$,
4. The m residue classes $[0] \mathrm{m},[1] \mathrm{m}, \ldots,[\mathrm{m}-1] \mathrm{m}$ are disjoint and their union is the set of all integers.

Theorem 1:

Every integer is congruent ($\bmod \mathrm{m}$) to exactly one of the numbers in the list : $0,1,2, \ldots \ldots .(m-2),(m-1)$.

Theorem 2.

$$
\mathrm{ca} \equiv \mathrm{cb}(\bmod \mathrm{~m}) \text { implies } \mathrm{a} \equiv \mathrm{~b}(\bmod \mathrm{~m}) \text { if and only if }(c, m)=1
$$

Theorem :

The set $\mathbf{I}_{\mathbf{m}}$ of all residue classes of integer modulo m contains exactly m distinct elements .

Proof:

We claim that $\mathbf{I}_{\mathbf{m}}=\{[0],[1],[2] \ldots .[m-1]\}$. First we show that m residue classes are all distinct. Let $0 \leq \mathrm{i}<\mathrm{m}, 0 \leq \mathrm{j}<\mathrm{m}$, and $\mathrm{j}>\mathrm{i}$.

Then $[\mathrm{i}]=[\mathrm{j}] \Rightarrow \mathrm{i} \equiv \mathrm{j}(\bmod \mathrm{m}) \Rightarrow \mathrm{i}-\mathrm{j}$ is divisible by $\mathrm{m} \Rightarrow \mathrm{j}-\mathrm{i}$ is divisible by m .
But $\mathrm{j}-\mathrm{i}$ is a positive integer less than m . So it can not be divisible by m .
Therefore $[\mathrm{i}] \neq[\mathrm{j}]$ and [0], [1], [2]....[m-1] are all distinct.
Now we shall show that if a is any integer, then the residue class [a] is equal to one of the residue classes [0], [1], [2]....[m-1]
by DAT, we have
$\mathrm{a}=\mathrm{km}+\mathrm{r}$, where $\mathrm{k}, \mathrm{r} \in \mathrm{I}$ and $0 \leq \mathrm{r}<\mathrm{m}$
$\Rightarrow \mathrm{a}-\mathrm{r}=\mathrm{km}$
$\Rightarrow a-r$ divisible by m
$\Rightarrow \mathrm{a} \equiv \mathrm{r}(\bmod \mathrm{m})$
$\Rightarrow[\mathrm{a}]=[\mathrm{r}]$
Since $0 \leq r \leq m-1$, therefore the residue class [a] = [r] is one of the classes [0], [1], [2]....[m-1]

Hence the set I_{m} has m distinct elements.

THANK YOU

